

BIM-Handbuch

Von der Verschwendung zur Vernunft

Ausgabe 2023

BIM-Handbuch

Von der Verschwendung zur Vernunft

Leitfaden für eine gemeinsame, erfolgreiche und transparente Umsetzung von BIM im kommunalen Verkehrswege- und Tiefbau (BIM K-VTB)

Autoren

Rainer Schrode

Geschäftsführer MTS Schrode AG

Dipl.-Ing. (TH) Markus Becker

Geschäftsführer Ingenieurbüro Berthold Becker

Prof. Dr.-Ing. Alexander Beetz

Hochschule für Technik Stuttgart

M. Eng. Andreas Falch

Planung und BIM Manager

Dipl. Ing. (FH) Marco Herberger

Bereichsleiter Fachbereich Planung - Vermessung - BIM

Dipl.-Wirt.-Ing. (FH) MTD Tobias Hesse

Ausbildungsleiter BIM K-VTB

Dipl. Verwaltungswirtin (FH) Ulrike Holzbrecher

Bürgermeisterin Stadt Hayingen

Dr. Sigurd König

Fachanwalt für Bau- und Architektenrecht

Marek Leks

Abteilungsleiter Straßen, Brücken und Gewässer Coburg

Dipl. Geol. Dr. Gerhard Lörcher

Produktmanager MTS-SMART (Digitale Baustelle), GIS-Experte

Rainer Mang

Geschäftsführer der Abteilung Wirtschafts- und Baurecht, Bauwirtschaft BW e.V

Dipl. Geol. Ulrike Nohlen

Bereichsleitung MTS-PILOT (Digitale Bauprozesse), Entwicklung Geotechnik

Andreas Ragg

Datenaufbereitung und Planung, Produktmanagement CAD-Applikationen

Dipl.-Bauing. Michael Raps, MaS ICT

Wissenschaftlicher Mitarbeiter Jade Hochschule

B.Eng. Kevin Rau

Produktmanagement MTS-Navi, BIM-Manager

Bjarne Roggenstein

Anwendungstechniker MTS-PILOT (Digitale Bauprozesse)

B.Eng. Lukas Schrode

Bauleiter und Geschäftsführer Schrode-Bau GmbH, BIM-Manager

Dipl.-Ing. (FH) Markus Trost

Anwendungsberater Automatisierung, BIM-Manager

Wir danken den Auftraggebern, Planern, Bauunternehmern, Fachverbänden, Juristen und Hochschulen für Ihre Mitarbeit!

Vorwort

Weshalb interessieren wir uns überhaupt für BIM?

Seit der letzten Ausgabe (im Januar 2019) ist es uns gelungen, einige BIM-Projekte erfolgreich umzusetzen. Die wesentliche Erkenntnis daraus war, dass wir mit herkömmlichen Bauweisen ein nicht mehr tolerierbares Maß an Zeit und Ressourcen verschwenden.

Wer den Gedanken weiter denkt, kommt auf Fragen wie diese: Haben wir tatsächlich einen Fachkräftemangel oder verschwenden wir unsere Zeit einfach mit unnötigen Dokumentationen und Prozessen, Vielfachablagen und ungenutztem Know-How? Bauen wir tatsächlich noch oder verwalten wir uns vorrangig selbst?

Gemäß dem von mir gern zitierten Pareto-Prinzip (80/20-Regel) sollten sich 80 % der Baumaßnahmen mit einem Aufwand von 20% erledigen lassen. Leider stellen wir diesen Grundsatz in unserer täglichen Praxis auf den Kopf, indem wir bis zu 80% unserer Zeit mit Bürokratie, Nachplanungen und Streitigkeiten verschwenden, und nur die restlichen 20% aufs Bauen verwenden. Ganz zu schweigen davon, dass wir dabei weder nachhaltig bauen noch nachhaltig dokumentieren.

Zentraler Leitgedanke der von uns entwickelten Pilot-Projekte war es deshalb, das "Big Picture" der BIM-Idee auf die bereits heute im kommunalen Verkehrswegeund Tiefbau bestehenden Umsetzungsmöglichkeiten hin verständlich und praxisnah herunterzubrechen. Eines unserer Pilot-Projekte waren die MTS-Innovationstage, die unter dem Aspekt der Digitalisierung und Nachhaltigkeit mit dem GREEN BIM Award 2021 (in der Kategorie Bauen) ausgezeichnet wurden.

Um Dir¹ das im Rahmen dieser Projekte erarbeitete Know-How zugänglich zu machen, haben wir die ausführlichen technischen Informationen unserer ersten Ausgabe in dieser überarbeiteten Ausgabe durch einen umfangreichen Abschnitt mit praxisrelevantem Wissen ergänzt. Mit dem Ziel, auch Dich von den vielen offensichtlichen Vorteilen des BIM-Prozesses zu überzeugen:

Angefangen bei plangenauen Ausschreibungen über die daraus resultierende Kostensicherheit und den besser kalkulierbaren Zeithorizont bis hin zu einem nach Abschluss der Maßnahme weiterhin nutzbaren Datenbestand. Klingt zu gut um wahr zu sein?! Dann lasse uns mit diesem Buch das Gegenteil beweisen.

Rainer Leonhard Schrode Geschäftsführer MTS Schrode AG, Leiter AK-BIM Tiefbau

¹ Du bist überrascht dass ich Dich mit "Du" anrede? Zusammenarbeit ist eine der wichtigsten Eigenschaften, um erfolgreich Projekte umsetzen zu können. Deswegen war der erste Akt bei uns im BIM-Cluster BW auf die "Du-Ebene" zu wechseln, um die Distanz zu reduzieren und auf Augenhöhe kommunizieren zu können. Das Ergebnis ist sagenhaft.

1 BIM Basic Grundlagen

1.1		endigkeit BIM aus einem Interview mit Ulrike Holzbrecher, ermeisterin der Stadt Hayingen	14
1.2	Einfü	hrung BIM	15
	1.2.1	BIM Definition und Notwendigkeit	15
	1.2.2	Wo steht die Bauwirtschaft heute?	15
	1.2.3	BIM-Potential	18
	1.2.4	Was ist das Wichtigste bei BIM	19
	1.2.5	Fazit	20
1.3	Meth	odische Grundlagen und objektorientierter Modellaufbau	21
	1.3.1	Grundsätze der BIM Methode = Zusammenarbeit + Informationsaustausch	21
	1.3.2	BIM-Reifegrad	22
	1.3.3	Informationsmodelle AIM / PIM	23
	1.3.4	Objektorientierter Modellaufbau	24
	1.3.5	Level of Information Need (LoIN)	26
	1.3.6	Bauwerksmodelle (BM) - Fachmodelle	28
	1.3.7	Koordinierung	28
1.4		ile und Herausforderungen durch die Anwendung BIM im Unternehmen	30
	1.4.1	Probleme im Informationsfluss erkennen	30
	1.4.2	Werkzeuge für den Informationsaustausch	30
	1.4.3	Herausforderungen in der Umsetzung von BIM	31
	1.4.4	BIM – Wandel der Arbeitskultur	31
	1.4.5	Vorteile für die Projektpartner im Gesamten	31
	1.4.6	Vorteile von BIM für Auftraggeber und Betreiber	32
	1.4.7	Vorteile von BIM für Planer und Fachplaner	32
	1 4 8	Vorteile von RIM für hauausführende Unternehmen	33

1.5 Der B	IIM Prozess	34
1.5.1	BIM Ziele – BIM Anwendungsfälle	34
1.5.2	Informationsbereitstellungsprozess nach DIN EN 19650-1	34
1.5.3	Informationsbereitstellung nach DIN EN 19650-2 und -3	35
1.5.4	Fähigkeiten, Kompetenzen und Kapazitäten	35
1.5.5	Kollaborative Erzeugung (CDE / CDE-Workflow)	36
1.5.6	Rollen und Verantwortlichkeiten	36
1.5.7	BIM Referenzprozess im K-VTB	38
1.6 Strate	egie und Prozess – Veränderungs-Management	45
1.6.1	Chancen und Risiken	45
1.6.2	BIM Möglichkeiten	46
1.6.3	Der Mehrwert	47
1.6.4	Der Faktor Mensch	47
1.6.5	Probleme	47
1.6.6	Grundsätzliches Muster für die Implementierung der BIM-Methodik	48
1.6.7	Herausforderungen bei der Einführung von BIM	49
1.6.8	Rechtliche Rahmenbedingungen	49
1.6.9	Leistungsphasen nach HOAI	51
1.6.10	BIM-spezifische Besonderheiten bei Ausschreibung und Vergabe	51
1.7 BIM V	Verkzeuge und Open BIM	52
1.7.1	Austausch von Daten und Modellen mittels IFC	52
1.7.2	Model View Definitions (MVD)	55
1.7.3	Building Smart Data Dictionary (bSDD)	57
1.7.4	BIM Collaboration Format (BCF)	58
1.8 Aktu	eller Stand der BIM Normung	59

2 Umsetzung BIM K-VTB in der Praxis

2.1		endigkeit von BIM für Ingenieurbüros us Becker, Geschäftsführer Berthold Becker GmbH	64
2.2	Auftr	aggeber-Informations-Anforderungen (AIA) im K-VTB	66
	2.2.1	BIM Ziele	66
	2.2.2	Projektbeschreibung	67
	2.2.3	BIM-Anwendungsfälle	67
	2.2.4	Bestehende digitale Datenhaltungen des Auftraggebers	67
	2.2.5	Gemeinsame Datenumgebung, Datenaustausch und Datenformate	67
2.3	BIM-	Abwicklungsplan (BAP) im K-VTB	68
	2.3.1	Ziel und Zweck des BAP	68
	2.3.2	Entwicklung eines BAP	
	2.3.3	Inhalte des BAP	68
	2.3.4	Anwendung des BAP	71
	erfol	nunalen Verkehrswege- und Tiefbau mit der BIM-Methode greich umgesetzt werden kann? : Muss das Rad für BIM neu erfunden werden?	72
	2.4.1	Was bedeutet BIM?	72
	2.4.2	Welche Vorteile bringt BIM?	72
		Wie lässt sich das Arbeiten mit BIM	
		in einem Bauvertrag vereinbaren?	73
	2.4.4	Welche grundlegenden "Spielregeln" müssen	7.0
	245	für das Arbeiten mit BIM vereinbart werden?	
	2.4.5	Fazit	/0
2.5	Quer	einstieg über Nebenangebot	77
	2.5.1	BIM ist bei der Planung noch nicht vorgesehen – was (kann ich) tun?	77
	2.5.2	Wie groß ist der Aufwand, nach der Ausschreibung BIM umzusetzen?	77
	253	Wie kann ein Nebenangehot mit RIM aufgehaut werden?	77

3 Das BIM-Modell K-VTB

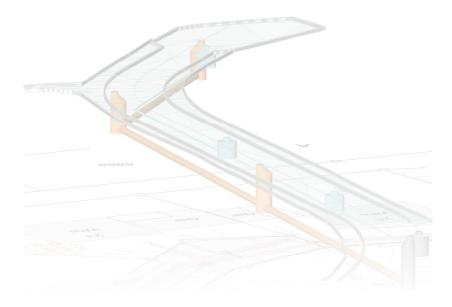
3.1	Das B	IM-Modell K-VTB - PLANEN	.80
	3.1.1	3D-Leitfaden	81
	3.1.2	Koordinatensysteme – wo arbeiten wir? I Übergeordnete Koordinatensysteme in Deutschland II Was ist im Umgang mit UTM-Koordinaten zu beachten? III Lokale Koordinatensysteme IV Was heißt das für die Praxis?	85
	3.1.3	Baugrundmodellierung I Baugrund und Homogenbereiche	90
	3.1.4	3D-Planung I BIM - Ansprüche an eine Planung II Mindestanforderungen an die Planung für eine digitale Ausführung III Auswirkungen komplexer Modellierung auf die Ausführung IV BIM – Fragen an einen Planer	95
	3.1.5	Datenaufbereitung I Warum Datenaufbereitung II Datenaufbereitung kurz erklärt III Grundlagen zur DGM-Erstellung IV 3D-Datenaufbereitung auf einen Blick – Kanal mit 3D-Linien V 3D-Datenaufbereitung auf einen Blick - Kanal VI 3D-Datenaufbereitung auf einen Blick - Straßenbau VII 3D-Datenaufbereitung auf einen Blick - Baugrube	100
	3.1.6	DGM-Querschnitte	.110

3.2	Das B	IM-Modell K-VTB - BAUEN	125
	3.2.1	Build as Planned	126
3.3	Doku	mentation und As-Built	129
	3.3.1	Geometrie I Ausgabe des MTS-PILOT II MTS-PAL Manager III Daten sichern und weitergeben IV Punkte und Linien V Aufmaßelemente VI Digitaler Mengennachweis VII Analoger Mengennachweis VIII Flächen und Volumen 1 IX Flächen und Volumen 2 X REB-Ausgabe	130
	3.3.2	Qualitätssicherung der durchgeführten Arbeiten. I BIM und ZTV E-Stb II Ein BIM-fähiger Anbauverdichter FDVK und 3D-Verdichtungsprotokoll (Bericht aus Fokus 2022)	140
	3.3.3	Abrechnung aus dem Modell. I Built as Planned - Abrechnung nach Plan II Differenzaufmaß III Erfahrungen bei der BIM Pilotbaustelle in Hayingen IV Der Weg zum integrierten, digitalen Planen und Bauen (Bericht aus Fokus 2022)	143
	3.3.4	Aufmaßassistent als Ergänzung für z.B. private Zusatzaufträge	148
3.4	GIS u	nd Betrieb	150
	3.4.1	GIS: Was ist das?	151
	3.4.2	Rollen und Aufgaben im GIS-Betrieb	154
	3.4.3	GIS Datenformate und Datenaustausch I BIM und GIS	155
	3.4.4	Datenübergabe aus BIM I Übergabe der As-Built-Daten in GIS II GIS in der städtischen Praxis: Bauwerksunterhaltung Coburg	156

4 Akademie Ausbildung BIM K-VTB

4.1.	Motive für eine Ausbildung	162
4.2.	Ziele der BIM Baustellenmanager Ausbildung	162
4.3.	Struktur und Inhalte der Ausbildung	163
4.4.	Feedbacks von Teilnehmern und Organisationen	164
4.5.	Oualitätskriterien	165

5 Anhang


Checkliste 3D-Baustelle Digitale Unterlagen des Planers/Vermessers gemäß 3D-Leitfaden	168
Baustelleneinrichtung Polier	170
Checkliste – 3D Baustelleneinrichtung Als Grundlage vor dem Einrichten einer Baustelle	171
Gewerkspezifische Empfehlungen Kanalbau	172
Kabel- und Rohrleitungstiefbau	
Straßenbau	
GaLa-Bau	175
Baugruben	176
Ingenieurbau	177
Datenformate nach 3D-Leitfaden	178
Vorlage für ein Nebenangebot für die digitale Bauausführung, Dokumentation und Abrechnung gemäß BIM Tiefbau	180
Dokumentation und Abrechnung gemaß Bilwi Herbau	100
Besondere Vertragsbedingungen für die Ausführung von Bauleistungen mit BIM im kommunalen Verkehrswege- und Tiefbau (BIM-BVB K-VTB)	184
Auftraggeber-Informations-Anforderungen für den kommunalen Verkehrswege- und Tiefbau AIA K-VTB	189
DIM Abusishunganlan für dan	
BIM-Abwicklungsplan für den kommunalen Verkehrswege- und Tiefbau BAP K-VTB	203

		ш	_	_	_	_	
	G	ш	\mathbf{a}	c	•	=	m
•	~	ш	v		_	ш	

Abkürzungsverzeichnis	224
Allgemeine Fachbegriffe	227
BIM-Begriffe	231
BIM-Dokumente	234
BIM-Beteiligte	235

BIM Basic Grundlagen

1.1	Notwendigkeit BIM aus einem Interview mit Ulrike Holzbrecher, Bürgermeisterin der Stadt Hayingen	14
1.2	Einführung BIM	15
1.3	Methodische Grundlagen und objektorientierter Modellaufbau	21
1.4	Vorteile und Herausforderungen durch die Anwendung von BIM im Unternehmen	30
1.5	Der BIM Prozess	34
1.6	Strategie und Prozess-Veränderungs-Management	45
1.7	BIM Werkzeuge und Open BIM	52
1.8	Aktueller Stand der BIM Normung	59

